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Abstract 

The Gulf of Mexico reef fish complex is socioeconomically important and is exploited by a 

vertical line fishery capable of high resolution spatial targeting. Indices of abundance derived 

from fishery dependent catch-per-unit-effort (CPUE) data are an important input to the 

assessment of these stocks. Traditionally, these indices have been derived from standardized 

logbook data, aggregated at a coarse spatial scale, and are limited to generating predictions for 

observed spatiotemporal strata. Understanding how CPUE is spatially distributed, however, can 

help identify range contractions and avoid hyperstability or hyperdepletion, both of which can 

mask the true population dynamics. Vessel monitoring systems (VMS) can provide complete, 

high-resolution distributions of CPUE used to create abundance indices. Here we compare two 

methods — spatial averaging of VMS-derived catch and effort data and the result of generalized 

linear models applied to logbook data for generating indices, to evaluate the use of VMS-derived 

abundance indices in assessments of reef fish stocks. This work suggests that in fisheries where 

targeting occurs at very fine spatial scales, abundance indices derived from high-resolution, 

spatiotemporally complete data may more accurately reflect the underlying dynamics of the 

stock. 
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1. Introduction37 
Abundance indices are an important input for stock assessments. Fisheries-dependent data,38 

such as catch-per-unit-effort (CPUE), are a common source of information for estimating trends 39 
in abundance, as they typically represent a more spatiotemporally complete and cost effective 40 
sample than fisheries-independent data (Ward, 2005). 41 

Despite the availability of fishery dependent data, they may not be reliable as catch rates may 42 
not adequately track abundance. Nominal CPUE are widely regarded as disproportionate to 43 
abundance (Beverton and Holt, 1957; Harley et al., 2001) due to hyperstability - abundance 44 
declining faster than CPUE, or hyperdepletion - CPUE declining faster than abundance (Hilborn, 45 
and Walters 1992). These sources of non-linearity between CPUE and abundance can be 46 
introduced through gear effects (saturation and handling time; Deriso and Parma, 1987)), 47 
changes in fishing power (Bishop et al., 2004; Ye and Dennis, 2009), and interference between 48 
vessels (Gillis and Peterman, 1998). In addition, discrepancies between the spatial distributions 49 
of species abundance and fishing effort can exacerbate the issue if fishers are not representatively 50 
sampling the underlying abundance distributions (Clark and Mangel, 1979; Paloheimo and 51 
Dickie, 1964; Rose and Kulka, 1999; Rose and Leggett, 1991; Swain and Sinclair, 1994). 52 

Bias in the relationship between CPUE and inferred abundance due to spatial distributions 53 
are typically addressed using one of two approaches: standardization or spatial imputation. Catch 54 
rates can be standardized using generalized linear models (GLMs) (Maunder and Punt, 2004; 55 
Nelder and Wedderburn, 1972) to separate the abundance trend from other factors. If spatial 56 
nominal CPUE data are available, they can be used to infer abundance trends provided they are 57 
spatially and/or temporally imputed to account for unfished areas and changes in the 58 
distributions of fishing effort (Walters, 2003). Abundance indices generated from spatially 59 
imputed nominal CPUE data that randomly sample the entire underlying distribution have been 60 
shown to track abundance accurately (Yu et al., 2013). However, for both of these approaches, 61 
the level of data aggregation is important to consider. Bias in the inferred abundance can occur if 62 
the level of data aggregation is too coarse such that fishing effort is no longer randomly sampling 63 
abundance within spatiotemporal strata (Campbell, 2004; Carruthers et al., 2010). Spatially 64 
averaging data on a fine spatial scale is more likely to represent the underlying abundance 65 
distribution of non-transient species (Carruthers et al., 2011). 66 

Vessel monitoring systems (VMS) have transformed the analysis of fisheries-dependent 67 
spatial information.  The high-resolution vessel location data provided by VMS have given 68 
fisheries scientists and managers a better understanding of the spatial distribution of effort (Lee 69 
et al., 2010; Mills et al., 2007), fisher behavior (Davie and Lordan, 2011; Vermard et al., 2010), 70 
and the abundance distributions of targeted stocks (Bertrand et al., 2008; Vinther and Eero, 71 
2013). Linking self-reported logbook catch records to VMS data has allowed for the creation of 72 
species-specific distributions of CPUE in European trawl fisheries for groundfish (Gerritsen and 73 
Lordan, 2011; Witt and Godley, 2007) and the vertical line fishery targeting reef fish in the Gulf 74 
of Mexico (Ducharme-Barth and Ahrens, 2017). 75 

The vertical line fishery in the Gulf of Mexico is a valuable commercial fishery (NMFS 76 
2015, 2016) that targets a diverse complex comprised primarily of snappers, e.g. Lutjanus spp, 77 
and groupers, e.g. Epinephelus spp (Scott-Denton et al., 2011). The four most commercially 78 
encountered species (red snapper Lutjanus campechanus, vermilion snapper Rhomboplites 79 
aurorubens, red grouper Epinephelus morio, and gag grouper Mycteroperca microlepis) can be 80 
characterized by an association with easily identifiable hard bottom structure (Grimes, 1978; 81 
Grimes and Huntsman, 1980; Lindberg et al., 2006; Moran, 1988) and high site fidelity 82 
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(Coleman et al., 2010, 2011). The vertical line gear (multiple baited lines dropped vertically from 83 
a stationary or slowly drifting vessel) fished in multiple short sets (~20 minutes) allows for high 84 
resolution spatial targeting of the hard bottom structure and the targeted fish stocks (Pollack et 85 
al., 2013; SAFMC, 2009; Scott-Denton et al,. 2011). This combination of targeting behavior and 86 
species characteristics predisposes the fishery to the risk of hyperstability, particularly in the 87 
absence of spatial information on where catches occur. 88 

Given the unique set of coinciding circumstances between vertical line fisheries and reef fish 89 
behavior, it is worthwhile to evaluate if developing abundance indices from higher resolution 90 
catch and effort data from VMS gives a more accurate approximation of the underlying 91 
abundance trends. Ideally, one would be able to work with data at a spatial resolution where 92 
sampling is representative of the underlying abundance (Walters, 2003). However, the fishing 93 
behavior of the vertical line fleet makes it unlikely that data aggregated at all but the finest scales 94 
(e.g. reef or artificial structure) meet this criterion. The current practice for generating abundance 95 
indices in this fishery is through the standardization of commercial logbook catch records 96 
aggregated to a coarse statistical grid, at best a 1 degree spatial grid, using a two-step delta-GLM 97 
(Lo et al., 1992; Stefansson, 1996). A delta-GLM is the product of two GLMs: a logistic model 98 
that describes the presence-absence of positive catches and an additional model (with normally 99 
distributed error structure in this case) that describes the magnitude of log(CPUE) for catches 100 
greater than 0. This paper evaluates two methods of creating abundance indices as applied in a 101 
vertical line fishery for reef fish, and more generally in fisheries able to achieve a high level of 102 
spatial targeting of non-transient species. 103 

We conducted analyses to compare abundance indices derived from the same input catch 104 
data using two methods: the delta-GLM standardization (status-quo) and spatial averaging of 105 
VMS derived CPUE distributions. The first analysis evaluated the agreement between indices 106 
generated from the two methods utilizing as input commercial logbook catch records from a suite 107 
of reef fish stocks that make up a large proportion of the catch by the vertical line fleet in the 108 
Gulf of Mexico. Agreement was assessed in two ways: (i) by calculating the correlation between 109 
the indices from the two methods, and (ii) by calculating the change in abundance inferred by 110 
each method. Instances of poor agreement between the two methods provided motivation for 111 
determining which method more accurately tracked abundance. 112 

A simulation analysis was used to assess how well each method captured the true population 113 
abundance trend under different effort and abundance scenarios. Corresponding catch and VMS 114 
records were simulated and passed as input to the two methods to create abundance indices. The 115 
deviations of the indices from the true trend were calculated to determine which method was 116 
more accurate under the various scenarios. A principal component analysis (PCA) identified 117 
characteristics of scenarios where there were large disparities in the accuracy of the two 118 
methods. Previous simulation studies investigated the effects of spatial aggregation, changing 119 
distribution of effort, and imputing unfished spatiotemporal strata on indices for pelagic fisheries 120 
standardized with GLMs (Campbell, 2004, 2015; Carruthers et al., 2010, 2011; Lynch et al., 121 
2012). Other have studies investigated how geostatistical averaging of VMS-informed catch rates 122 
compared to a fisheries-independent measure of abundance in a scallop fishery (Walter et al. 123 
2014a, b). This work represents the first direct comparison of abundance indices derived from 124 
delta-GLM standardization and spatial averaging of VMS derived CPUE distributions.  125 

2. Material and Methods126 
This study aimed to address the potential fine-scale spatial targeting problem in conventional127 

CPUE standardization by evaluating the use of VMS data for estimating population trends. 128 
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Multiple analyses, conduct in R 3.3.2 (R Core Team, 2016), were used to compare the delta-129 
GLM and VMS methods. An overview of the fishery and the species included in the study can be 130 
found in section 2.1 and a description of the two data sources informing each method can be 131 
found in section 2.2. The first step was to use the same fisheries data to estimate abundance 132 
indices using the two methods for every study species. Detail on how abundance indices were 133 
constructed for each method can be found in section 2.3. The next step was to assess the 134 
agreement in species abundance indices estimated using the two methods. This was done using a 135 
non-parametric approach described in section 2.4. Calculating the agreement between indices 136 
constructed using the same catch data, but with different methodologies allowed us to identify if 137 
there were noticeable differences between the abundance indices created.  138 

A simulation study was used to evaluate which method was more accurate in estimating 139 
abundance under a suite of scenarios governing how effort and abundance were distributed 140 
spatially. The base simulation described in section 2.5.1 was designed to simulate fine scale 141 
targeting in a multi-species fishery on a 1/12

th
 degree spatial grid. Section 2.5.2 describes how142 

the base simulation was modified for each scenario. In each scenario, abundance indices for each 143 
species were calculated using the two methods along with the deviation from the true simulated 144 
population trend (described in section 2.5.3). This allowed us to identify how sensitive the 145 
accuracy of each method was with respect to changes in broad patterns of effort and abundance. 146 
A multivariate analysis (described in section 2.5.4.) was used to identify the effort and 147 
abundance characteristics of species-scenario combinations where the two methods predicted 148 
diverging abundance trends.   149 

The base simulation made the simplifying assumption that sampling by the fishery did not 150 
affect abundance, as this feedback was not necessary in the direct comparison of the ability of 151 
the two methods to handle fine-scale spatial data. However, making this assumption ignored the 152 
potential effects of in-year sequential depletion occurring at scales smaller than the spatial grid 153 
used in the simulation. Hyperstability could occur in fisheries targeting small aggregations or 154 
reefs within a cell if vessels move from reef to reef fishing down each in turn. A modification to 155 
the base simulation (described in Section 2.5.5) was used to explore how sequential depletion at 156 
the cell level affected the estimated abundance indices’ ability to capture the true abundance 157 
trend.  158 

2.1. Study Frame 159 
The study frame for this project was the vertical line reef fish fishery within the Gulf of 160 

Mexico EEZ (Fig. 1) during 2007‒ 2013. Vertical line fishing consists of dropping multiple 161 
baited hooks on a single line or multiple lines deployed vertically from a stationary or slowly 162 
drifting vessel. These lines are predominantly retrieved using mechanical means such as electric 163 
or hydraulic reels though they may also be retrieved by hand. Fishing occurs in distinct 164 
spatiotemporal sets defined as the period that hooks are being fished from a vessel at that 165 
location. Multiple drops of the gear can occur during each fishing set. A change in location or 166 
prolonged period with hooks out of the water represents a change to a new fishing set. Species 167 
were included in the analysis if they were within the top 25 of catch by weight over the study 168 
period (Table 1). Two pelagic species in the top 25 were excluded as they were likely targeted 169 
using non-vertical line gear. 170 

2.2. Data 171 
This study used two data sets: VMS-derived spatial CPUE and commercial logbook self-172 

reported catch records (CLB). VMS use was required for all vessels holding a commercial Gulf 173 
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of Mexico Reef Fish Permit starting in 2007,. Vessel positions are reported every 60 minutes at a 174 
resolution of ~0.1 meters. Reported positions were excluded from the analysis if they occurred 175 
outside of the study frame, were assumed not to represent fishing activity (<5 km from land), or 176 
corresponded to non-vertical line gear. The resulting data set contained 2,769,857 VMS entries 177 
spanning the study period (except for July and August 2010; these data were unavailable). 178 

To determine whether the vessel positions corresponded to fishing activity, VMS points were 179 
classified as fishing or not fishing using a two-step random forest classification algorithm 180 
(Ducharme-Barth and Ahrens, 2017). A unit of effort in the fishery was defined to be a VMS 181 
point classified as fishing. Spatial distributions were generated at monthly intervals using the 182 
GPS information associated with each VMS entry. Effort points were aggregated on a 1/12

th183 
degree spatial grid (roughly 10 km x 10 km). The species-specific catch in pounds for each trip 184 
in the CLB was uniformly distributed to all effort points associated with that trip. Spatial CPUE 185 
by species was defined in each grid cell as the total catch weight across all trips divided by the 186 
number of effort points across all trips.  187 

A Monte Carlo simulation method was used to propagate classification uncertainty into the 188 
spatial distributions by generating 201 CPUE values for each grid cell. The method applied a 189 
two-step process that combined variability in the predicted state (fishing or not-fishing) for each 190 
VMS entry due to the random forest model and uncertainty in the predicted state accounting for 191 
the classification accuracy of the model. Thus, each of the 201 values represent an alternative 192 
fishing scenario that can be used to create an individual abundance index. The number of values, 193 
201, generated for each cell was selected because variability across scenarios had stabilized 194 
when including more than 100 scenarios, and using greater numbers of scenarios became 195 
computationally challenging. Ducharme-Barth and Ahrens (2017) provide further detail of the 196 
VMS classification process and Monte Carlo simulation methods. 197 

The second data source was the CLB records that corresponded to the VMS points. Within 198 
the study period, the CLB contained 31,643 unique vertical line fishing trips targeting reef fish. 199 
Trips were retained in the analysis if they indicated that a vertical line gear (hand line, hand gear, 200 
or hydraulic/electric reel) was used on that trip. A small percentage of retained trips (2%) 201 
indicated that multiple gears were used. Logbook variables considered for CPUE standardization 202 
included year, month, area fished, days away, number of crew, season, and region. Season was 203 
determined from month (1 – Jan, Feb, March; 2 – April, May, June; 3 – July, August, September; 204 
4 – October, November, December). The region (Fig. 1) was assigned based on the reported area 205 
or statistical zone. Species CPUE by trip was defined as catch in pounds per hook-hours fished. 206 
Hook-hours fished is the product of number of lines fished, hooks fished per line, and total hours 207 
fished. 208 

2.3. Abundance Indices 209 
2.3.1. VMS  210 

Annual abundance indices were created from VMS-derived spatial CPUE distributions for 211 
each of the 201 fishing scenarios using a combination of temporal imputation and spatial 212 
averaging (Walters, 2003). Within a fishing scenario, 82 monthly spatial CPUE distributions 213 
were computed to span the time series of seven years (minus two missing months). Cells were 214 
identified for temporal imputation if they were empty in a month but fished in another month. 215 
Empty cells were filled with the average value of that cell from the two previous months. If a cell 216 
was empty to begin the study period, but was fished in a later month, all months leading up to the 217 
first month fished were filled with the value of the first month fished. Following imputation, cell 218 
values were averaged within month to generate a monthly abundance index. For the two missing 219 
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months of data (July and August 2010), CPUE was imputed as the average of the two adjoining 220 
months. The monthly abundance indices were summed within year to create the annual 221 
abundance indices. Repeating this process across fishing scenarios resulted in 201 annual 222 
abundance indices. This allowed for the calculation of uncertainty as the 95% inter-quantile 223 
range around the median for each year in the abundance index. The resulting indices were 224 
rescaled to Z scores e.g. mean of zero and standard deviation of one. 225 

2.3.2. Delta-GLM (status-quo) 226 
The most practical comparison would be between the VMS-derived abundance index and a 227 

corresponding commercial vertical line index used in the SouthEast Data, Assessment, and 228 
Review (SEDAR) process. The SEDAR process provides assessments for stocks in the southeast 229 
United States, including the Gulf of Mexico. Unfortunately, there was not a complete set of 230 
indices from the SEDAR process spanning the study period for all species. Additionally, 231 
variables used to standardize CPUE tended to vary slightly among different species (Bryan, 232 
2013; Bryan and McCarthy, 2015; McCarthy, 2011; Saul, 2013; Smith et al., 2015; Smith and 233 
Goethel, 2015). For this study, species-specific indices derived from CLB data were created 234 
using a common framework that best approximated the various approaches used in the SEDAR 235 
process. 236 

Abundance indices were created from CLB records corresponding to trips that likely 237 
encountered the target species. These trips were identified using a logistic regression model of 238 
multi-species presence-absence data taken from the CLB records (Stephens and MacCall, 2004). 239 
Then a delta-GLM (Lo et al., 1992; Stefansson, 1996) was used to standardize the log(CPUE) of 240 
the target species. Explanatory variables were selected for inclusion separately in each of the two 241 
delta-GLM sub-models according to Akaike information criterion (AIC), with the candidate 242 
variables being year, temporal strata (season or month), region, days away, and crew. All 243 
variables were categorical, and days away and crew number were binned (1,2,3,4,5,6,7,8,9,10+ 244 
and 1,2,3,4,5+ respectively). At minimum, the two sub-models had to contain a year effect, a 245 
temporal effect (season or month), and a region effect. Only one temporal effect could be 246 
considered in a sub-model at a time. All effects in the model were assumed to be fixed. 247 
Interactions between spatial and temporal strata were not considered as there were incomplete 248 
observations of strata combinations for some of the species considered. Imputing the catch rate 249 
of missing strata was not considered since this technique is not commonly used in the SEDAR 250 
process.  To ensure that bias did not enter the delta-GLM parameter estimates due to the uneven 251 
distribution of observations across spatiotemporal strata in the models (Campbell, 2004), the 252 
observations were reweighted such that each spatiotemporal strata received equal weight in the 253 
models (Campbell, 2015).   254 

The predictions for both sub-models across a table of all possible spatiotemporal strata 255 
(Walters, 2003) were multiplied together and back transformed from log space to give a single 256 
expected CPUE in each strata. For models where days away and crew were selected, the modal 257 
observation for that variable was used in all predictions across spatiotemporal strata (Campbell, 258 
2015). Predictions within year were averaged across temporal strata (season or month) and a 259 
weighted average across regions was used to generate the annual abundance index (Campbell 260 
2015). When averaging across regions, the assigned weights were proportional to the areas of the 261 
regions. The standard error for the annual abundance index was constructed from the 262 
uncertainties associated with the two sub-models according to the method described in Campbell 263 
(2015). Lastly, the indices were rescaled to Z scores. 264 
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2.4. Abundance index agreement 265 
One of the purposes of this study was to assess the agreement between the indices generated 266 

from the two methods, VMS (V) and delta-GLM (C). We assess agreement using two methods: a 267 
standard metric of agreement, correlation, and a metric relevant to fishery managers that 268 
measures whether the two indices imply the same overall change in abundance.  269 

Given the autocorrelation in time series data, a conventional calculation of correlation and 270 
significance would not be appropriate. To account for the auto-correlated nature of the data as 271 
well as the uncertainty in each index, we used a non-parametric modification of surrogate data 272 
testing to test if the temporal structure of the indices resulted in a meaningful correlation between 273 
the two methods. Surrogate data testing is a proof by contradiction technique used in time series 274 
analysis to detect non-linearity (Schreiber and Schmitz, 2000; Theiler et al., 1992). Surrogate 275 
data testing works by calculating a given metric for the original time series and comparing it to a 276 
distribution of metrics calculated from many surrogate data sets generated by some null model. If 277 
the metric from the original time series falls outside of the distribution of metrics from the 278 
surrogate data, then the original time series is different from the null model. In our case, because 279 
there is uncertainty around each time series, we compared two distributions to each other rather 280 
than a point estimate to a distribution. This modification is outlined in Fig. 2. For each pair of 281 
indices, V and C (Fig. 2 A), two new indices, v and c, were created (Fig. 2 B): 282 

(  )  ( ) 

(  )  ( ) 

where      and      correspond to the means of V and C at time t, and      and  correspond to 283 
the standard errors of V and C at time t. The new indices, v and c, account for the uncertainty 284 
associated with the abundance indices while maintaining the temporal structure of those indices. 285 
A Pearson’s point-wise correlation can then be calculated between each pair of the indices v, c. 286 
Two surrogate indices, v’ and c’, can be formed by taking v and c and randomly rearranging their 287 
order (Fig. 2 C). A correlation is then calculated between each pair of the indices v’ and c’. 288 
Repeating the process of creating indices v, c, v’, and c’ (Fig. 2 B, C) 10,000 times resulted in a 289 
distribution of correlations where the temporal structure was preserved and a surrogate 290 
distribution of correlations where the temporal structure was rearranged (Fig. 2 D). The mode of 291 
the distribution where temporal structure was preserved gives the correlation between the two 292 
indices. Values closer to 1 show a positive correlation between indices and values closer to -1 293 
show a negative correlation between indices.  294 

The overlapping coefficient (OVL) is a commonly used metric for assessing the similarity 295 
between two distributions (Inman and Bradley, 1989; Rom and Hwang, 1996) and non-296 
parametric estimates of OVL are robust to strong assumptions on the shape and variance of the 297 
distributions (Clemons and Bradley, 2000; Stine and Heyse, 2001). An OVL of 0 indicates the 298 
two distributions are completely dissimilar and an OVL of 1 indicates the two distributions are 299 
identical. The OVL, referred to as OVLCorr, between the two distributions indicates the similarity 300 
of the correlations between the two indices accounting for the temporal autocorrelation and error 301 
associated with each index. In the current case, low OVL values indicate that the distributions of 302 
correlation with and without temporal structure are highly dissimilar and that the temporal 303 
structure resulted in a meaningful correlation. High OVL values indicate that a random temporal 304 
structure was just as likely to achieve the same level of correlation between indices. 305 

We used the same 10,000 simulated indices, v and c, to asses if both indices inferred the 306 
same change in stock abundance. Inferred change in stock abundance for each index was 307 
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calculated as the difference between the mean of the first two years of the index and the mean of 308 
the last two years of the index. Each index was already scaled relative to its mean and standard 309 
deviation so this allowed for comparisons of the change in inferred stock abundance between 310 
indices. For each of the 10 000 indices the inferred change in stock abundance was calculated. 311 
This resulted in two distributions, one for the change in stock abundance inferred by the VMS 312 
method and the other for the change inferred by the delta-GLM method. The OVL, referred to as 313 
OVLChange, between these two distributions was calculated. Low values of OVL indicated that the 314 
two distributions were dissimilar and that the two methods, VMS and delta-GLM, inferred 315 
different changes in stock abundance. 316 

2.5. Simulation 317 
2.5.1. Base simulation 318 

To further evaluate the two methods, we designed a spatial simulation test to replicate the 319 
spatiotemporal dynamics of the underlying species abundance distributions and the vertical line 320 
fishery. A simulated fishing fleet was distributed across a multi-species fishery comprised of 15 321 
species. Fishing and species abundance patterns were simulated at an annual scale for 7 years 322 
and across a 1/12

th
 degree spatial grid.323 

The spatial distributions of abundance were simulated to be representative of reef fish species 324 
encountered in the Gulf of Mexico (Table 2). For each species, the base abundance distributions 325 
were smoothed versions of average annual distributions of spatial CPUE from the VMS data. 326 
Each base abundance distribution was rescaled to sum to         so that each species started 327 
the simulation with the same abundance. An annual abundance trend was applied to each species 328 
using a first order random walk:  329 

 ( ) 

where        is the abundance of species s in cell i in year t, and   is a normally distributed error 330 
term applied to each cell (  is defined in more detail in Section 2.5.2.). Summing abundance 331 
across cells within years gave the true abundance trend for each species. 332 

Fishing trips were simulated to be representative of the characteristics observed in the CLB 333 
and VMS datasets. The total number of trips,            , in any given year t of the simulation 334 
was a random draw from the following distribution. 335 

(    )  ( ) 

Three variables defined each fishing trip f where : the number of VMS 336 
points or locations fished on a trip, ; the trip length in days,       ; and the number of 337 

crew, . The parameters used to define the distribution for these variables were estimated 338 

from the VMS and CLB data sets. 339 

 (   )  ( ) 

  (  )  ( ) 

     (  )  ( ) 

In any trip, if 0 was drawn for any of these variables it was replaced with 1. Additionally, 340 
 was rounded to the nearest integer value. The spatial distribution of effort was simulated 341 

by selecting an initial fishing location for each fishing trip, and then allowing additional 342 
movements to other cells for the remaining locations in     . The initial location or cell for a 343 
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fishing trip was allocated in accordance with a simple gravity model such that near shore cells 344 
with high expected revenues had the greatest chance of being selected.: 345 

∑  ( ) 

( )  ( ) 

where  was the initial cell for fishing trip f in year t,  was the relative distance from shore 346 

in cell i,  was the relative expected revenue in cell i in year t, and  was the value of species 347 
s in year t. The annual value of species was taken as the average annual price per pound reported 348 
in the NOAA Annual Commercial Landing Statistics (NOAA, 2017). Movement to adjacent 349 
cells within a fishing trip was simulated according to a Queen’s Case random walk with a 60% 350 
chance of staying in the same cell at each move. Out of bound cells were either on land or had a 351 
depth beyond 600m as either of these represent unlikely fishing locations for vertical line gear.  352 

Each simulated fishing trip recorded the grid cells fished, the region corresponding to the 353 
initial fishing location, and the total catch of each species. The catch at each location, , was 354 

a function of abundance, , and vessel catchability,     . The vessel catchability was defined 355 

by  and a spatiotemporally correlated normally distributed random error,     . 356 

 (  ) 

 (   ) (   )  (  ) 

The parameters used to define  and  were selected so that the simulation produced 357 

realistic catch rates, representative of what the CLB data showed, given the scale of abundance. 358 
Additionally, we assumed that vessels with greater numbers of crew would be able to achieve 359 
higher catch rates because of reduced handling times. The species-specific catch was zero-360 
inflated to account for occasions where no catches were made at that cell despite fishing effort. 361 
The error term      was constructed as a first order random walk of Gaussian random fields 362 
(GRF) using the RandomFields package in R (Schlather et al., 2015):  363 

   (                   )                                                                 (  ) 

2.5.2. Scenarios 364 
The simulation applied a full factorial design considering three factors, each with two levels, 365 

resulting in eight scenarios (Table 3). To quantify variability, each scenario was simulated 100 366 
times. The factors considered were species abundance pattern, how effort was distributed, and 367 
changes in spatial targeting. For the first factor, species included in the simulated fishery could 368 
have one of two abundance patterns, global or local. In the global case, the   in Eq. (3) was the 369 
same for each cell. In the local case,   was different for each cell and defined as a first order 370 
random walk of GRFs in the same way as      but with       . This approach simulated a 371 
scenario where there were localized patterns in abundance due to regional patterns in 372 
oceanographic conditions. For the second factor of the simulation, effort was distributed in one 373 
of two ways. In the first case, there were no restrictions on the initial fishing location (    ). The 374 

second case allocated      to the four main spatial regions in proportion to the observed regional 375 

effort distribution from the fishery. This represented a scenario where vessels were unwilling to 376 
travel very far from their home port. The third factor controlled changes in spatial targeting by 377 
manipulating      in the gravity model. The first case did not force a change in spatial targeting, 378 
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and the values of      were held constant across years. The second case forced a spatial targeting 379 
change midway through the simulation, by manipulating revenues (    ) for two of the 15 380 
species. The baseline values for species 7 and 9 were $3.34/pound and $2.65/pound, 381 
respectively. However, in this second case, in years 1-3 the value for species 9 was set to 382 
$10

7
/pound and in years 5-7 the value for species 7 was changed to $10

7
/pound. This had the383 

effect of concentrating effort in the SEGOM region over the first three years of the simulation, 384 
opening the distribution of effort up in the fourth year, and then driving effort to the WGOM 385 
region in the final three years of the simulation. This case demonstrates an instance where the 386 
fishery dramatically changed its spatial targeting behavior due to changes in species desirability 387 
driven by regulatory or socioeconomic factors. 388 

2.5.3. Abundance indices 389 
Species-specific abundance indices were calculated for each simulation using the methods 390 

described in Section 2.3, albeit with slight changes accounting for simplifying assumptions made 391 
in the simulation. In the VMS method, spatial distributions of species CPUE were constructed at 392 
an annual scale by uniformly allocating      across all cells visited by a specific trip. Temporal 393 

imputation followed the method in Section 2.3.1, but at an annual time step instead of a monthly 394 
time step. Species abundance indices were created by taking the average of each imputed annual 395 
CPUE distribution.  396 

The simulation testing approach provided an opportunity to test the effects of spatial strata 397 
size and the inclusion of spatial interactions in the status-quo standardization procedure. Four 398 
delta-GLM formulations were used in each simulation to estimate abundance indices: large strata 399 
and no interactions (delta-GLM I), large strata with interactions (delta-GLM II), small strata and 400 
no interactions (delta-GLM III), and small strata with interactions (delta-GLM IV). The large 401 
strata correspond to the four main regions in the Gulf of Mexico (Fig. 1), and the small strata to 402 
the 10 subdivided regions (Fig. 1). Formulations with interactions allowed for sub-models that 403 
include year and region interactions to be included in the selection of the best model. Each of 404 
these formulations modified the same base delta-GLM. The base delta-GLM standardized 405 
log(CPUE) as a function of year, region, days away, and crew. CPUE from a given trip was 406 
defined at the set level as           . 407 

Species abundance indices were created following Section 2.3.2. Trips from the simulated 408 
logbook that were likely to have targeted a given species were identified using the method of 409 
(Stephens and MacCall, 2004). CPUE from these trips were standardized using the delta-GLMs 410 
described in the previous paragraph. Inclusion of interaction terms in the construction of species 411 
abundance indices followed the suggestions made in Campbell (2015).  412 

The ability of each method to capture the true trend was assessed in each simulation and for 413 
each species by calculating the root-mean-square deviation (RMSD) between the estimated 414 
abundance index and the true index. The RMSD between two indices is defined as: 415 

√
∑ (  ) 
   

 (  ) 

All indices, both true and estimated, were scaled relative to their means and standard 416 
deviations, making values of RMSD comparable across species and scenarios. 417 
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2.5.4. Multivariate analysis 418 
We used a principal component analysis (PCA) to identify the characteristics of scenarios of 419 

particular concern where the two methods estimated diverging trends in abundance. PCA is a 420 
multivariate technique that clusters observations in ordination space (McGarigal et al., 2000), 421 
and gives meaning to where observations are positioned relative to each other based on the 422 
principal component axes and the included variables. Principal component axes are orthogonal 423 
compositions of the included variables, with each axis explaining some proportion of the total 424 
variability in the observations. When plotted, observations and variables with positive values for 425 
a given principal component indicate positive correlation with that axis, and conversely negative 426 
values for an axis indicate negative correlation. Nine variables (all scaled relative to their mean 427 
and standard deviation) characterizing the simulations (Table 4) were used in the PCA. The first 428 
two principal components, respectively explaining 37.91% and 15.39% of the total variability, 429 
were retained for this analysis. 430 

2.5.5. Sequential depletion simulation 431 
We made three modifications to scenario 6 (Table 3) of the base simulation to explore the 432 

potential effects of in-year sequential depletion on the method’s ability to estimate the true 433 
abundance trend. We chose the effort and abundance patterns of scenario 6 as our baseline since 434 
it provided a realistic approximation of the fishery without drastic changes in spatial targeting. 435 
The three modifications were 1) within cell abundance (       ) was distributed across reefs, 2) 436 
within cell effort was distributed across reefs, and 3) catches were subtracted from abundance at 437 
that reef within year. The number of fishable reefs in cell i was defined as a random draw from a 438 
Poisson distribution. 439 

  (  )  (  ) 

If the value 0 was drawn for any cell, it was replaced with 1. In the base simulation, fished 440 
cells were visited approximately 4-5 times a year. We simulated the number of reefs per cell with 441 
  = 7 to ensure the likelihood of sequential depletion occurring at the cell level. Cell abundance 442 
at the start of a year was randomly allocated across reefs associated with that cell. Effort 443 
characteristics and cells fished within each trip were simulated in the same way as in the base 444 
simulation. For each cell fished on a trip, a reef within that cell was then randomly selected using 445 
a multinomial distribution. The probability of selecting a particular reef within a cell was equal 446 
to the proportion of total cell abundance at that reef. Catch was then defined at the reef level 447 
according to equations 10 and 11, and then subtracted from the available abundance at that reef 448 
in that year. If the catch value generated by equation 11 was greater than the available abundance 449 
at that particular reef, the catch was set equal to the available abundance. Abundance indices 450 
were then calculated in the same way as described in Section 2.5.3 for the VMS and delta-GLM I 451 
methods. When calculating the RMSD, the true abundance was taken as the mean of the starting 452 
and ending abundances for each year.   453 

3. Results454 
Using the same catch records, abundance indices (Fig. 3) were estimated for each species455 

listed in Table 2 using both the VMS and delta-GLM methods. Those that showed the strongest 456 
degree of positive correlation and lowest OVLCorr (Table 5) included two species that were 457 
subject to high levels of directed targeting across a wide expanse of available fishing grounds, 458 
red snapper and gag grouper, as well as two species that are caught in association with them, 459 
gray triggerfish and black grouper, respectively. In general, most species showed some level of 460 
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positive correlation, with both approaches revealing similar trends, though values of OVLCorr 461 
were notably large. The greater the combined uncertainty between the two approaches, the 462 
higher the OVLCorr in the relationship even if the mean trajectories appeared to correlate visually, 463 
e.g., yellowtail snapper, hogfish, and mutton snapper. In these three cases, the delta-GLM I464 
indices all showed greater uncertainty than the VMS. All three of these species have relatively465 
restricted spatial distributions of catch in an area of the Gulf of Mexico (SEGOM) that is subject466 
to lower levels of fishing effort relative to the other regions. A delta-GLM approach attempting467 
to standardize abundance at the Gulf-wide scale, like that currently used, could estimate higher468 
levels of uncertainty due to fewer observations in spatial strata outside of the geographic core of469 
the species catch distributions.470 

Two species were of particular concern, red porgy and mangrove snapper, as the two 471 
methods appeared to estimate inverse trends. This was corroborated by looking at the overall 472 
change in stock abundance inferred by each method for these two species as the OVLChange was 473 
zero for both. For both of these species the VMS method indicated an overall increase in stock 474 
abundance and the delta-GLM indicated an overall decrease. Additionally, there were 10 other 475 
species where the OVLChange indicated meaningful differences (OVLChange < 0.05) and/or inferred 476 
different patterns of stock abundance. Clearly, these conflicting results were driven by 477 
differences in how the data were standardized or how spatial information was handled. However, 478 
without knowing the true trend, it was impossible to determine which method provided more 479 
accurate estimation. This issue demonstrated the need for our simulation study.   480 

The simulation generated 100 sets of catch and effort data across eight scenarios. Using each 481 
simulated data set, five abundance indices (VMS and delta-GLMs I-IV) were created for each 482 
species within each scenario. Of the 15 species included in the simulation, the results for five of 483 
them are shown as representative of the diversity of patterns exhibited across all species. Species 484 
1-2 and 7-8 were characterized by broad spatial distributions, while species 9 had a very485 
restricted spatial distribution. Additionally, species 7 and 9 were used in the target switching486 
scenarios with effort switching on or off (respectively).487 

A clear pattern emerged in the simulated abundance indices (Fig. 4). The VMS indices (blue) 488 
were consistently able to track the true abundance (black) for each species, across scenarios. Of 489 
the three factors manipulated to create the scenarios, abundance pattern and spatial targeting 490 
shifts both negatively affected performance of the simulated delta-GLM I indices (red). As 491 
expected, changing the abundance pattern from global (scenarios 1-4) to local (scenarios 5-8) 492 
had a negative effect on the delta-GLM I performance, since that particular formulation was 493 
unable to account for asymmetrical changes in abundance at scales smaller than the considered 494 
strata. Introducing a shift in spatial targeting had a subtler effect on the delta-GLM I indices. 495 
These indices appeared to be biased high for species in time periods when they were directly or 496 
indirectly targeted with greater effort. This effect is most clearly shown in scenarios 3 and 4 497 
across all species. Effort targeting increased in the first three years for species 9, in year 4 for 498 
species 1 and 2, and in the last 3 years for species 7 and 8.  Manipulating the effort distribution 499 
by restricting it within certain regions did not appear to alter the ability of either method to 500 
distinguish the true trend.  501 

Accounting for additional delta-GLM formulations offered improvement but did not change 502 
the overall pattern that VMS indices more closely approximated the true trend (Fig. 5). As 503 
expected, the formulations using the smaller spatial strata provided an improvement in the delta-504 
GLM indices. Allowing for models with spatial-temporal interaction terms to be included in the 505 
model selection process had mixed results. In most cases, including interactions resulted in a best 506 



13 

model that either improved or did not meaningfully change the fit, even if inclusion of 507 
interaction terms were unwarranted (global abundance scenarios). However, there were cases 508 
where the unwarranted inclusion of interaction terms resulted in a diminished ability to estimate 509 
the true trend. In scenarios (Fig. 4, scenarios 3-4 for species 9) where the species occupied a 510 
restricted spatial range, a spatial shift in targeting occurred, and small spatial strata were used in 511 
the delta-GLM; the AIC indicated a mis-specified model as the best performer, which resulted in 512 
poor estimation of the true trend. 513 

In addition to evaluation of methods, the simulation study was also able to replicate the 514 
prediction of inverse trends first observed in the actual data (Fig. 4, Species 8).  A multivariate 515 
visualization (Fig. 6) showed the particular abundance and effort characteristics associated with 516 
this observation. An abundance decline and range contraction occurred simultaneously with a 517 
shift in spatial targeting. This resulted in a case where simulated fishing effort became 518 
increasingly able to target ―hot spots‖ of abundance even as the stock decreased in range and 519 
total abundance. The increased correlation between effort and abundance shown by the 520 
increasing trend in Lee’s L supported this.  This dynamic was likely what proved problematic in 521 
the delta-GLM approaches, as effort was sampling non-randomly within the spatial strata 522 
considered, and thus introducing upward-biased catches into the analysis. 523 

Accounting for in-year sequential depletion did not appear to make a meaningful difference 524 
in the method’s ability to estimate the true population trend. In-year decreases in abundance 525 
averaged -49.85 % (std. dev. = 5.94) across all 15 species and 100 sets of data. Comparing the 526 
RMSD of the two methods (VMS and delta-GLM I) from scenario 6 to those from the depletion 527 
scenario (Fig. 7) did not indicate deteriorations in either method, nor any change in their relative 528 
performances.  529 

4. Discussion530 
This paper shows that in fisheries where non-transient species are easily targeted at fine531 

spatial scales, spatial averaging of high resolution CPUE data provides a robust estimate of 532 
abundance trends. Even in simulated cases where there were pronounced shifts in both the spatial 533 
distributions of effort and abundance, the VMS indices could more closely track the true 534 
abundance pattern relative to the status-quo delta-GLM method. This may allow VMS indices to 535 
serve as a bridge across significant perturbing events that may alter the spatial targeting pattern 536 
of the fishery provided catchability has remained relatively constant during the transition. 537 
Additionally, the pairing of high-resolution spatial data with catch rate information can also lead 538 
to the creation of region-specific indices of abundance, which can be used as input in spatial 539 
stock assessments (Booth, 2000) and be an important layer (Babcock et al., 2005; St Martin and 540 
Hall-Arber, 2008) in the marine spatial planning process (Gilliland and Laffoley, 2008). 541 

Inferences on species trends targeted in the vertical line fishery for reef fish in the Gulf of 542 
Mexico may be limited due to the unquantified impacts of changing management practices. The 543 
emergence of inverse trends in both the actual and simulated data indicates that a spatial shift 544 
may have occurred at either the species or fleet level and that the VMS index may more 545 
accurately reflect abundance. However, either method would be susceptible to bias if the 546 
implementation of an individual fishing quota system (IFQ) on the grouper-tilefish sector of the 547 
fishery in 2010 (GMFMC, 2008) resulted in a sudden shift in catchability due to quota 548 
consolidation among more efficient vessels (Yandle and Dewees, 2008) or increased rates of 549 
discarding so that landings data became uncorrelated with abundance (Turner, 1997). This issue 550 
could partially be addressed by crafting abundance indices from a reference fleet of vessels, with 551 
assumed constant efficiency, which fished before and after the implementation of the IFQ 552 
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system. Improving knowledge of discarding behavior through mandatory reporting or increased 553 
observer coverage could also explain changes in catchability. In addition to the potential IFQ 554 
influences on catchability, the multi-species nature of the reef fish fishery in the Gulf of Mexico 555 
could also affect catchability as a result of substructure within the fleet. For example, there exist 556 
several sub-fleets within the fishery, including those targeting shallow-water grouper, red 557 
snapper, and deep-water species (Scott-Denton et al., 2011).  Though all targeted species are 558 
susceptible to capture by vertical line gear, subtle differences in gear configuration among sub-559 
fleets could result in differential species-specific catchabilities. If differences in catchabilities are 560 
large and sub-fleet distribution is non-random, spatial biases in catch rate could be introduced. A 561 
good understanding of vessel membership among sub-fleets would be critical to addressing this 562 
potential source of bias as abundance indices could be derived from the spatial CPUE 563 
distribution corresponding to each sub-fleet and then averaged together. 564 

Though not explicitly accounted for, the VMS indices were robust to the simulated sources 565 
of variability in catchability in the form of trip-level uncertainty and regional trends. This is 566 
likely a function of how the nominal spatial CPUE distributions used for the creation of those 567 
indices were defined. In defining spatial CPUE across all trips at the grid cell level, individual 568 
trip or vessel effects were averaged out provided there were a large number of unique samples 569 
within that cell. A limited number of trips in a given cell could reintroduce a bias in catch rates 570 
due to trip or vessel effects. Imputing values for cells with limited numbers of trips using 571 
regression could diminish this source of bias in the spatial averaging process used to create the 572 
abundance indices.  573 

Targeting species at spatial scales finer than what is modeled has the potential to introduce 574 
hyperstability due to sequential-depletion. The simulation used to explore the effects of 575 
sequential depletion was not exhaustive and it is possible that hyperstability occurred at the grid 576 
cell level, but was masked due to the variability in abundance across cells and/or across years. 577 
Future work is needed to further examine the issue of sequential depletion and how aggregation 578 
scale affects our ability to observe fine scale processes. The high-resolution nature of VMS data 579 
makes it uniquely positioned to address this issue as it allows for aggregation at the same spatial 580 
scale that targeting is occurring. 581 

Abundance indices derived from using the delta-GLM method were shown to be just as 582 
effective provided that the model was correctly specified to match the scale and dynamics of the 583 
underlying population. Improperly specifying the delta-GLM through the inclusion of 584 
unwarranted interaction terms or the use of inappropriately sized spatial strata led to decreased 585 
predictive ability. Earlier studies showed that AIC may select an overly complex model as best 586 
from a pool of candidate models (Carruthers et al., 2010; Kadane and Lazar, 2004). This result 587 
arose in the simulation in some cases as interaction models were incorrectly selected when there 588 
was in fact only a global trend in abundance. In a worst case scenario, specifying a model with 589 
inappropriately large strata resulted in an inverse trend being predicted by the delta-GLM. 590 
Further simulation of that scenario with smaller strata did improve the mean RMSD, though it 591 
still did not achieve the accuracy of the VMS-derived approach.  592 

In scenarios where the two methods appeared to be equally effective in tracking the true 593 
abundance trend, determined by their overlapping RMSD distributions, there still existed visual 594 
differences in predicted trend. Particularly in scenarios where a spatial shift in targeting 595 
occurred, slight anomalies were introduced in species trends using the delta-GLM method. This 596 
difference between the two approaches could be meaningful in a stock assessment, particularly if 597 
it causes the abundance trend to conflict with other data sources. Issues with conflicting data are 598 
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generally dealt with by either dropping the offending data source or reweighting it in the model 599 
(Maunder and Piner, 2017). Given the importance placed on maintaining a fit to the abundance 600 
trend during the data weighting process (Francis 2011, 2017), changing the data weighting to 601 
better fit the anomalous time series could have a large impact on the assessment output (Maunder 602 
et al., 2017; Punt, 2017). 603 

One of the advantages of the VMS approach is comparative simplicity. The only major 604 
decision required is specifying the imputation rule for filling in unfished areas. Though not an 605 
overly complicated model structure, a delta-GLM requires a relatively large amount of expert 606 
knowledge of the fishery to correctly specify the sub-models. Some of the decisions required 607 
include choice of variables used for standardizing CPUE, the number and size of spatial strata, 608 
whether to include interaction terms, imputation method for unfished strata combinations, model 609 
selection criteria, model error structure, and model effects structure. Additionally, a precursor to 610 
the application of a delta-GLM model is to identify trips targeting the focal species using a 611 
method such as that of Stephens and MacCall (2004). Currently, there is no general guidance 612 
regarding how changing the selected trips affects the estimated abundance index or associated 613 
uncertainty. Averaging across a spatial catch rate distribution comprising all available catch 614 
records avoids this potential added source of uncertainty.  615 

An extension of the delta-GLM, the spatiotemporal delta-generalized linear mixed model 616 
(delta-GLMM) is growing in popularity, though it is limited to regions where commercial 617 
logbooks include high resolution spatial data at the individual fishing set or tow level (Thorson 618 
and Barnett, 2017; Thorson et al., 2015). These models have shown the ability to accurately track 619 
abundance trends in multi-species fisheries where vessel targeting behaviors occur at multiple 620 
spatial scales (Thorson et al., 2016), provided the estimation model is correctly specified. Until 621 
the data requirements for this approach are met through observer coverage or electronic 622 
logbooks, creating indices from VMS-derived spatial CPUE data appears to be a suitable 623 
stepping stone from more commonly used delta-GLM approaches. Alternatively, the VMS-624 
derived spatial CPUE could be used as input for the spatiotemporal delta-GLMM models. 625 

This analysis demonstrates the utility of using high resolution CPUE distributions derived 626 
from VMS data to generate indices of abundance. The VMS method is comparatively simpler 627 
than delta-GLMs, and robust to changes in species and effort distributions. This approach shows 628 
much potential to incorporate high resolution spatial information about the fishery, and 629 
ultimately to improve stock assessments of non-transient species such as reef fishes in the Gulf 630 
of Mexico. 631 
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638 
Figure Captions 639 

640 
Figure 1: The Gulf of Mexico EEZ with the spatial regions considered in the analysis. The 641 

colored areas denote the four main regions: western Gulf (WGOM), northern Gulf (NGOM), 642 
northeastern Gulf (NEGOM), and southeastern Gulf (SEGOM). The lines indicate the 10 643 
subdivided regions for the smaller spatial strata considered. 644 
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645 
Figure 2: Diagram explaining how to calculate the correlation between two indices (A). The 646 

uncertainty of the initial indices is shown by the shaded regions. For each index, a new index is 647 
created by resampling from the uncertainty of the initial index (B). A correlation is calculated 648 
between the two new indices and is shown in green. For each new index in B, an additional index 649 
is formed by rearranging the order (C). A correlation is calculated between the two rearranged 650 
indices and is shown in orange. The process shown in panels B and C is repeated 10 000 times 651 
resulting in the two distributions of correlations (D). The time series correlation of the two initial 652 
indices is given by the mode of the distribution of correlations with order preserved (green). The 653 
overlapping coefficient (OVLCorr) is given by the overlap of the two distributions. 654 

655 
Figure 3: Indices of abundance with associated uncertainty constructed using the two 656 

methods. The blue corresponds to the VMS index with the median estimate and the 95% inter-657 
quantile range shown. Red corresponds to the delta-GLM index with the mean and the 95% 658 
confidence intervals shown. 659 

660 
Figure 4: Simulated abundance indices for five selected species, where each line represents a 661 

different prediction. The black line is the true abundance. Blue corresponds to the VMS-derived 662 
index and red corresponds to the estimate from a delta-GLM I index. The scenario number is 663 
denoted in the top right corner of each panel.  664 

665 
Figure 5: Violin plots showing the RMSD between predicted and true abundance for five 666 

selected species. The black line inside each violin signifies the 95% inter-quantile range, the 667 
black bar the 50% inter-quantile range, and the white dot the median RMSD. Moving from left to 668 
right within each panel the violins correspond to each method: VMS, delta-GLM I, delta-GLM 669 
II, delta-GLM III, and delta-GLM IV. The scenario number is denoted in the top right corner of 670 
each panel.  671 

672 
Figure 6: Principal components biplot for six of the nine variables used in the analysis. The 673 

lines represent the different variables, and the colored dots represent each species-method-674 
scenario combination. For the three trend variables, blue is decreasing, red is increasing, and 675 
yellow is stationary. For the abundance pattern blue signifies global trends and red signifies local 676 
trends. For the targeting pattern blue indicates no switch in spatial targeting and red indicates a 677 
switch in spatial targeting. For the remaining variable, blue shows a low RMSD and red shows a 678 
high RMSD. The large colored dots highlight scenarios 7 and 8 for species 8. 679 

680 
Figure 7: Violin plots showing the RMSD from Scenario 6 for two methods: VMS (blue) and 681 

delta-GLM I (red). The pair on the left are without simulated sequential depletion, and the pair 682 
on the right (shaded region) are with simulated sequential depletion. 683 
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Table 1 Species occurring in the top 25 of catch by the vertical line fleet. The * indicates species 959 
in the Gulf of Mexico Reef Fish Management Plan, and the # indicates species removed from the 960 
analysis. 961 

Scientific Name Common Name 

Balistes capriscus Gray Triggerfish * 

Calamus leucosteus Whitebone Porgy 

Calamus nodosus Knobbed Porgy 

Caranx crysos Blue Runner 

Caranx ruber Bar Jack 

Epinephelus flavolimbatus Yellowedge Grouper * 

Epinephelus morio Red Grouper * 

Epinephelus nigritus Warsaw Grouper * 

Epinephelus niveatus Snowy Grouper * 

Lachnolaimus maximus Hogfish * 

Lutjanus analis Mutton Snapper * 

Lutjanus campechanus Red Snapper * 

Lutjanus griseus Mangrove Snapper * 

Lutjanus synagris Lane Snapper * 

Lutjanus vivanus Silk Snapper * 

Mycteroperca bonaci Black Grouper * 

Mycteroperca microlepis Gag Grouper * 

Mycteroperca phenax Scamp * 

Ocyurus chrysurus Yellowtail Snapper*  

Pagrus pagrus Red Porgy 

Rachycentron canadum Cobia #

Rhomboplites aurorubens Vermilion Snapper * 

Scomberomorus cavalla King Mackerel # 

Seriola dumerili Greater Amberjack * 

Seriola rivoliana Almaco Jack * 

962 
963 
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Table 2 The 15 species used to inform the simulation and their approximate geographic 964 
distribution denoted as proportion of abundance in each region. 965 

Number Species WGOM NGOM NEGOM SEGOM 
1 Red Grouper 0.00 0.03 0.52 0.45 

2 Gag Grouper 0.07 0.12 0.60 0.21 

3 Black Grouper 0.20 0.07 0.31 0.43 

4 Warsaw Grouper 0.85 0.06 0.05 0.04 

5 Snowy Grouper 0.26 0.21 0.18 0.35 

6 Yellowedge Grouper 0.58 0.10 0.11 0.21 

7 Red Snapper 0.83 0.14 0.02 0.01 

8 Vermilion Snapper 0.65 0.29 0.05 0.01 

9 Yellowtail Snapper 0.02 0.00 0.00 0.98 

10 Mangrove Snapper 0.35 0.12 0.26 0.27 

11 Mutton Snapper 0.00 0.01 0.00 0.97 

12 Red Porgy 0.15 0.48 0.28 0.09 

13 Gray Triggerfish 0.54 0.27 0.10 0.09 

14 Whitebone Porgy 0.06 0.75 0.17 0.03 

15 Hogfish 0.00 0.03 0.82 0.15 

  966 
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Table 3 Description of each scenario used in the simulation. 967 

Scenario Abundance Pattern Effort Distribution Targeting Shift 

1 Global Restricted No 

2 Global Unrestricted No 

3 Global Restricted Yes 

4 Global Unrestricted Yes 

5 Local Restricted No 

6 Local Unrestricted No 

7 Local Restricted Yes 

8 Local Unrestricted Yes 

 968 

 969 
  970 
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Table 4 Description of variables used in PCA 971 

Variable Description 

1 - Species abundance trend The slope of the true trend in abundance.  

2 - Species hotspot trend The slope of the trend in the annual number of cells 

that had abundance values greater than or equal to 2/3 

of the maximum abundance value. 

3 - Correlation with true trend The time series correlation between the estimated trend 

and the true trend as described in section 2.4. 

4 - Pseudo-significance of correlation to the true trend  The pseudo-significance of correlation to the true trend 

as described in section 2.4. 

5 - Average annual Lee’s L correlation between the 

distributions of effort and species abundance 

Lee’s L is a bivariate measure of the spatial correlation 

between two distributions (Lee 2001). Lee’s L is 

bounded between -1 and 1 with values greater than 0 

indicating a positive correlation. 

6 - Trend in Lee’s L correlation between the 

distributions of effort and species abundance 

The slope of the trend in the annual Lee’s L correlation 

between the distributions of effort and species 

abundance. 

7 - Abundance pattern A binary variable indicating either a global or local 

abundance pattern. 

8 - Targeting shift A binary variable indicating the presence or absence of 

a spatial targeting shift. 

9 – Root-mean-square deviation The RMSD between the estimated and true trend 

calculated as shown in Eq. 13. 

 972 
 973 
 974 
  975 
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Table 5 The metrics of agreement, mean correlation and mean inferred change in stock 976 
abundance, and their respective overlapping coefficients (OVLs) between the two estimated 977 
indices of abundance for each species arranged in order (highest to lowest) of proportion of fleet-978 
wide catch. 979 

Common Name Correlation OVLCorr ChangeVMS ChangeGLM OVLChange 

Red Snapper 0.85 0.05 2.23 1.53 0.04 

Vermilion Snapper 0.41 0.34 -1.64 -0.30 0.00 

Red Grouper 0.51 0.27 2.19 0.31 0.00 

Gag Grouper 0.97 0.01 -1.75 -1.86 0.72 

Yellowtail Snapper 0.44 0.73 -1.09 0.04 0.53 

Greater Amberjack -0.03 0.92 -0.13 -1.30 0.43 

Red Porgy -0.55 0.33 1.80 -2.08 0.00 

Scamp 0.69 0.17 -1.02 -1.72 0.17 

Mangrove Snapper -0.57 0.28 1.67 -1.00 0.00 

Black Grouper 0.95 0.09 -1.85 -1.87 0.60 

Lane Snapper 0.33 0.67 0.45 -0.60 0.38 

Whitebone Porgy -0.14 0.69 -2.04 0.06 0.06 

Gray Triggerfish 0.86 0.09 -2.22 -1.96 0.63 

Warsaw Grouper 0.67 0.32 2.05 2.02 0.78 

Snowy Grouper -0.25 0.75 1.80 -1.55 0.05 

Yellowedge Grouper -0.28 0.70 1.84 -1.93 0.03 

Almaco Jack 0.45 0.50 1.90 0.50 0.10 

Silk Snapper -0.32 0.76 -0.17 0.47 0.70 

Bar Jack 0.55 0.59 2.23 1.62 0.23 

Hogfish 0.58 0.51 1.78 1.18 0.40 

Knobbed Porgy -0.42 0.81 -1.38 1.50 0.20 

Blue Runner 0.24 0.81 2.25 0.77 0.62 

Mutton Snapper 0.57 0.68 2.30 1.11 0.40 

 980 
 981 


